57 research outputs found

    Failure dynamics of the global risk network

    Full text link
    Risks threatening modern societies form an intricately interconnected network that often underlies crisis situations. Yet, little is known about how risk materializations in distinct domains influence each other. Here we present an approach in which expert assessments of risks likelihoods and influence underlie a quantitative model of the global risk network dynamics. The modeled risks range from environmental to economic and technological and include difficult to quantify risks, such as geo-political or social. Using the maximum likelihood estimation, we find the optimal model parameters and demonstrate that the model including network effects significantly outperforms the others, uncovering full value of the expert collected data. We analyze the model dynamics and study its resilience and stability. Our findings include such risk properties as contagion potential, persistence, roles in cascades of failures and the identity of risks most detrimental to system stability. The model provides quantitative means for measuring the adverse effects of risk interdependence and the materialization of risks in the network

    Cascading failures in spatially-embedded random networks

    Get PDF
    Cascading failures constitute an important vulnerability of interconnected systems. Here we focus on the study of such failures on networks in which the connectivity of nodes is constrained by geographical distance. Specifically, we use random geometric graphs as representative examples of such spatial networks, and study the properties of cascading failures on them in the presence of distributed flow. The key finding of this study is that the process of cascading failures is non-self-averaging on spatial networks, and thus, aggregate inferences made from analyzing an ensemble of such networks lead to incorrect conclusions when applied to a single network, no matter how large the network is. We demonstrate that this lack of self-averaging disappears with the introduction of a small fraction of long-range links into the network. We simulate the well studied preemptive node removal strategy for cascade mitigation and show that it is largely ineffective in the case of spatial networks. We introduce an altruistic strategy designed to limit the loss of network nodes in the event of a cascade triggering failure and show that it performs better than the preemptive strategy. Finally, we consider a real-world spatial network viz. a European power transmission network and validate that our findings from the study of random geometric graphs are also borne out by simulations of cascading failures on the empirical network.Comment: 13 pages, 15 figure

    Resilience of Complex Networks to Random Breakdown

    Full text link
    Using Monte Carlo simulations we calculate fcf_c, the fraction of nodes which are randomly removed before global connectivity is lost, for networks with scale-free and bimodal degree distributions. Our results differ with the results predicted by an equation for fcf_c proposed by Cohen, et al. We discuss the reasons for this disagreement and clarify the domain for which the proposed equation is valid

    Communication Bottlenecks in Scale-Free Networks

    Full text link
    We consider the effects of network topology on the optimality of packet routing quantified by γc\gamma_c, the rate of packet insertion beyond which congestion and queue growth occurs. The key result of this paper is to show that for any network, there exists an absolute upper bound, expressed in terms of vertex separators, for the scaling of γc\gamma_c with network size NN, irrespective of the routing algorithm used. We then derive an estimate to this upper bound for scale-free networks, and introduce a novel static routing protocol which is superior to shortest path routing under intense packet insertion rates.Comment: 5 pages, 3 figure

    The Approximate Invariance of the Average Number of Connections for the Continuum Percolation of Squares at Criticality

    Full text link
    We perform Monte Carlo simulations to determine the average excluded area ofrandomlyorientedsquares,randomlyorientedwidthlesssticksandalignedsquaresintwodimensions.Wefindsignificantdifferencesbetweenourresultsforrandomlyorientedsquaresandpreviousanalyticalresultsforthesame.Thesourcesofthesedifferencesareexplained.Usingourresultsfor of randomly oriented squares, randomly oriented widthless sticks and aligned squares in two dimensions. We find significant differences between our results for randomly oriented squares and previous analytical results for the same. The sources of these differences are explained. Using our results for and Monte Carlo simulation results for the percolation threshold, we estimate the mean number of connections per object BcB_c at the percolation threshold for squares in 2-D. We study systems of squares that are allowed random orientations within a specified angular interval. Our simulations show that the variation in BcB_c is within 1.6% when the angular interval is varied from 0 to π/2\pi/2

    Graph Partitioning Induced Phase Transitions

    Full text link
    We study the percolation properties of graph partitioning on random regular graphs with N vertices of degree kk. Optimal graph partitioning is directly related to optimal attack and immunization of complex networks. We find that for any partitioning process (even if non-optimal) that partitions the graph into equal sized connected components (clusters), the system undergoes a percolation phase transition at f=fc=1−2/kf=f_c=1-2/k where ff is the fraction of edges removed to partition the graph. For optimal partitioning, at the percolation threshold, we find S∼N0.4S \sim N^{0.4} where SS is the size of the clusters and ℓ∼N0.25\ell\sim N^{0.25} where ℓ\ell is their diameter. Additionally, we find that SS undergoes multiple non-percolation transitions for f<fcf<f_c

    Scale-Free Networks Emerging from Weighted Random Graphs

    Full text link
    We study Erd\"{o}s-R\'enyi random graphs with random weights associated with each link. We generate a new ``Supernode network'' by merging all nodes connected by links having weights below the percolation threshold (percolation clusters) into a single node. We show that this network is scale-free, i.e., the degree distribution is P(k)∼k−λP(k)\sim k^{-\lambda} with λ=2.5\lambda=2.5. Our results imply that the minimum spanning tree (MST) in random graphs is composed of percolation clusters, which are interconnected by a set of links that create a scale-free tree with λ=2.5\lambda=2.5. We show that optimization causes the percolation threshold to emerge spontaneously, thus creating naturally a scale-free ``supernode network''. We discuss the possibility that this phenomenon is related to the evolution of several real world scale-free networks
    • …
    corecore